

MACKEY 並列配置型の小型化を目的とした Wi-Fi 2 GHz/5 GHz 帯用 アンテナ MACKEY T 型の検討

平野 賢^{†a)} 牧野 滋[†] 伊東 健治[†]

MACKEY Type T Covering Wi-Fi 2 GHz/5 GHz Bands for Miniaturization of MACKEY Parallel Arrangement Type

Ken HIRANO^{†a)}, Shigeru MAKINO[†], and Kenji ITOH[†]

あらまし 近年 IoT (Internet of things) 分野の更なる発展が期待され,様々な製品の無線化が進んでいる. 無線化に伴い,アンテナに求められる条件は小型・薄型化だけでなく,金属の有無にかかわらず設置することが できる柔軟性が求められる.金属上に設置可能なアンテナとして,MACKEY (Meta-surface inspired Antenna Chip developed by KIT EOE Labo-ratory)が提案された.測定した MACKEY は,自由空間のみならず金属 上においても動作することが示された.Wi-Fi 2 GHz/5 GHz 帯を満たすため,MACKEY 並列配置型が提案さ れた.並列配置型は,Wi-Fi 2 GHz 帯モデルのMACKEY 基本型とWi-Fi 5 GHz 帯モデルのMACKEY 広帯 域型との相互結合による性能の劣化を防ぐために,スペースを設けている.そのため,基板横幅が大きくなって しまうという課題があった.本論文では,並列配置型の小型化を目的として,基本型を構成する一部と広帯域型 を構成する一部を共有することで,小型化したMACKEY T型を提案する.設計したT型は並列配置型に比べ 約 30%小型化されるとともに,自由空間のみならず金属上においても動作することを示す.

キーワード MACKEY, 相互結合, Wi-Fi

1. まえがき

近年スマートフォンやタブレットに代表される通信 端末の普及に基づき, IoT (Internet of Things)分野 の更なる発展が期待される.総務省がまとめた情報通 信白書平成 30 年度版では, IoT デバイスの数は 2017 年には 270 億, 2020 年には約 400 億に上ると予想さ れている. IoT デバイスの稼働数が多い分野は通信で あるが,成長率は産業用途,自動車,医療が高いと予 測されている [1]. これらのデバイスは,インターネッ ト回線を通じて無線ネットワークに接続が可能になる ことから,無線化への対応が求められる.無線化に伴 い,アンテナには,小型・薄型化に加え,周囲の金属 の有無にかかわらず設置することができる柔軟性が求 められる.

金属上に設置可能な技術として、メタサーフェス技 術がある.メタサーフェス技術には,磁界の接線成分 がゼロの境界条件をもつ完全磁気導体(以下, PMC: Perfect Magnetic Conductor) を用いる方法があるが, PMC 特性をもつ物質は自然界に存在しない [2]. PMC 特性を人工的な構造で構成したメタサーフェス技術 の一つの人工磁気導体(以下, AMC: Artificial Magnetic Conductor) は、多くの研究がされている[3]~ [5]. AMC 基板を実現するため, 波長に比べて小さな 構造を2次元的に周期配列した構造を誘電体基板を介 して金属板に装荷したものがある.2次元の周期配列 を1次元のグリッドで周期配列したキャパシタンスグ リッドを用いたもの[6] が報告されている.また、有 限サイズの AMC 基板上に設けた半波長ダイポールア ンテナ [7], [8] についても報告されている. しかしなが ら、有限サイズの AMC 基板では様々な製品に搭載す るには大きすぎるという難点を抱えていた.

そこで、ダイポールアンテナと AMC 基板を一体化 した機能的小型アンテナ (以下, MACKEY: Metasurface inspired Antenna Chip developed by KIT

[†] 金沢工業大学,野々市市 Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichishi, 921-8601 Japan

a) E-mail: b6700829@planet.kanazawa-it.ac.jp DOI:10.14923/transcomj.2018JBP3044

EOE Laboratory) が考案された [9]. MACKEY の構 造と類似したアンテナの一例としてマイクロストリップ アンテナ (以下, MSA) を挙げる. MSA と MACKEY はいづれも地板を有する小型・薄型アンテナである. 自由空間では, MACKEY に対して, MSA が広帯域 となるが, 金属上に設置した際には, MSA に対して, MACKEY の方が金属上の影響が少ないことが示され た [10]. MACKEY と MSA は, いずれも地板を有し た構造となっているが金属上の影響に差があることが わかる.

Wi-Fi 2 GHz 帯 (2.4 - 2.5 GHz,比帯域幅:4.1%) モ デルでは,MACKEY 基本型 (以下,基本型) [9],Wi-Fi 5 GHz 帯 (5.15 - 5.725 GHz,比帯域幅:10.6%) モ デルでは,MACKEY 広帯域型 (以下,広帯域型) [11] と MACKEY O 型 (以下,O型) [12] が報告されてい る.2 周波共用モデルでは,MACKEY E 型 [13] と O 型 [14] が報告されている.しかしながら,報告された MACKEY では Wi-Fi 2 GHz/5 GHz 帯を満たすこ とができていない.

そこで,Wi-Fi 2 GHz/5 GHz 帯を満たすため, 基本型と広帯域型の二つのアンテナを並列に並べた MACKEY 並列配置型 (以下,並列配置型) が提案さ れた [15].提案された並列配置型は,自由空間のみな らず金属上においても動作することが報告された.並 列配置型は,基本型と広帯域型との相互結合による 性能の劣化を防ぐために,スペースを設けている.そ のため,基板横幅が大きくなってしまうという課題が あった.

本論文では、並列配置型の小型化を目的として、基 本型を構成する2枚のグリッドと広帯域型を構成する 2枚のグリッドの、それぞれ1枚を共有することで、グ リッド枚数が3枚となり小型化した MACKEY T型 (以下, T型: Triple grids type)を提案する. グリッド を共有することで、従来4枚のグリッドが必要であっ たが、3枚となることで小型化を実現することができ る.本文中では、T型の詳細な設計方法について説明 する.2.において、従来型の MACKEY である基本 型,広帯域型,並列配置型を示す.3.において,T型 を実現するためのアイディアについて説明する.4.に おいて, T型を実現するためには, 各周波数に対応し た2枚のグリッド幅が異なるため、2枚のグリッド幅 が異なる MACKEY A 型 (以下, A 型: Asymmetric type) を検討する. A 型の検討では, Wi-Fi 2 GHz/5 GHz帯を満たす共有グリッド幅を決定する.また、試

作した A 型の解析・測定結果の比較を行う. 5. におい て, Wi-Fi 2 GHz/5 GHz 帯を満たした T 型の設計例 を示す.また,試作した T 型の解析・測定結果の比較 を行い,本検討の有効性を示す.

2. 従来の MACKEY

2.1 MACKEY 基本型 (Wi-Fi 2 GHz 帯)

図 1(a) に基本型のモデル図を,図 1(b) に金属上 での設置方法を示す.上部から順に①アンテナ基板, ②グリッド基板,③金属板で構成されており,それぞ れの間を誘電体が満たしている.金属上の検討では, 金属板が十分大きな場合とするため,図 1(b)のよう に $3\lambda \times 3\lambda$ の金属板の中央に設置した.表 1 に基本 型の設計パラメータを示す.本論文では, h = 0.74

(a) Model diagram of original type

(b) Model diagram installed on a metal plate

図1 基本型のモデル図と金属上の設置図

Fig. 1 Model diagram of original type and installed on a metal plate.

表 1 基本型の設計パラメータ Table 1 Design parameters of original type.

design parameter	value
length of dipole antenna : ℓ	27.0
width of grid : g	27.5
length of substrate : L	55.5
width of substrate : W	30.0
width of dipole antenna : w	1.0
width of slit : s	0.5

Unit [mm]

表 2 広帯域型の設計パラメータ Table 2 Design parameters of wide-band type.

design parameter	value
length of the dipole antenna : ℓ	12.8
width of grid : g	10.8
length of substrate : L	22.1
U	nit [mm]

mm, t = 3.12 mm と固定した. 基板は NPC-F260A (日本ピラー工業株式会社)を使用し,hの ε_r = 2.53, tan δ = 0.0018, tの ε_r = 2.59, tan δ = 0.0028 とす る.基本型は,アンテナ長: ℓ とグリッド幅:gで共 振周波数をコントロールし,整合した.整合の条件は, 設計周波数におけるインピーダンスが 50 Ω になるよ うに行う.

図 2 に基本型の自由空間と金属上における VSWR 特性の計算結果を示す.図 2 より,自由空間だけでな く金属上においても動作していることがわかる.また, 比帯域幅は自由空間で 7.3%,金属上で 5.2%であり, Wi-Fi 2 GHz 帯の比帯域幅を満たしていることがわか る.比帯域幅は VSWR = 3 以下で算出した.解析は 有限要素法による電磁界シミュレーター (ANSYS 社, HFSS)を用いた.

2.2 MACKEY 広帯域型 (Wi-Fi 5 GHz 帯) 広帯域型は基本型と同様の構造となっているが,基 板横幅に対して適切な基板縦幅を選択することで,単 ーの共振点しかもたない MACKEY が双峰性の特性 を得られることが報告されている [11].表2に広帯域 型の設計パラメータを示す.なお,表2に示していな いパラメータは表1と同様とする.広帯域型は,第1

共振周波数をアンテナ長:ℓとグリッド幅:gで,第 2共振周波数を基板縦幅:Wでコントロールし,整合 した.

図3に広帯域型の自由空間と金属上における VSWR 特性の計算結果を示す.図3より,自由空間だけで なく金属上においても動作していることがわかる.ま

図 3 広帯域型の VSWR 特性 Fig. 3 VSWR characteristics of wide-band type.

Fig. 4 Model diagram of parallel arrangement type.

た,比帯域幅は自由空間で 19.7%,金属上で 20.7%で あり,Wi-Fi 5 GHz 帯の比帯域幅を満たしていること わかる.

2.3 MACKEY 並列配置型

Wi-Fi 2 GHz/5 GHz 帯の使用帯域を満たすため, 基本型と広帯域型を並列に並べた並列配置型を示す. 図 4 に並列配置型のモデル図を,表 3 に設計パラメー タを示す. Wi-Fi 2 GHz 帯は, Wi-Fi 2 GHz 帯用の アンテナ長: ℓ_1 とグリッド幅: g_1 で, Wi-Fi 5 GHz 帯は, Wi-Fi 5 GHz 帯用のアンテナ長: ℓ_2 とグリッ ド幅: g_2 で整合した.並列配置型は基本型と広帯域型 との間に相互結合による性能の劣化を防ぐために,ス ペースを設けている.

図 5 (a) に S21 を,図 5 (b) に正面 (X) 方向での利 得の計算結果を示す.また,表4 に S21 と正面 (X) 方 向での利得を示す.図 5 (a) 及び表4より,2.45 GHz の S21 では,アイソレーションが-25 dB 以下,5.25 GHz と 5.60 GHz では,-15dB 以下であり,アイソ レーションが良いことがわかる.図 5 (b) 及び表4よ り,2.45 GHz の利得では,各 sp に差異は見られず基

	表 3 並列配置型の設計パラメータ
Table 3	Design parameters of parallel arrangement
	type.

design parameter		value	
space : sp	1.0	2.0	3.0
length of dipole antenna (2 GHz) : ℓ_1	28.5	27.7	28.7
length of dipole antenna (5 GHz) : ℓ_2	16.5	14.6	14.4
width of grid (2 GHz) : g_1	26.4	26.6	26.8
width of grid (5 GHz) : g_2	10.6	10.0	9.9
length of substrate : L	75.8	76.6	78.4
design parameter		value	
space : sp	4.0	5.0	10.0
length of dipole antenna (2 GHz) : ℓ_1	27.9	27.7	27.0
length of dipole antenna (5 GHz) : ℓ_2	14.3	14.8	13.7
width of grid (2 GHz) : g_1	26.8	27.0	27.1
width of grid (5 GHz) : g_2	9.8	10.3	9.9
length of substrate : L	79.5	80.5	85.0
		Uni	t [mm

図 5 並列配置型の S21 と正面 (X) 方向における利得 Fig. 5 S21 and Gain in the front(X) direction of parallel arrangement type.

表 4	\mathbf{S}	21 と	並列的	配置型	の]	E面 ((X) 方向に	おける利得	Ŧ
Table	4	S21	and	Gain	$_{\mathrm{in}}$	$_{\rm the}$	$\operatorname{front}(\mathbf{X})$	$\operatorname{direction}$	of
		para	allel a	rrang	em	ent t	type.		

	sp[n	nm]	1.0	2.0	3.0	4.0	5.0	10.0
$2.45~\mathrm{GHz}$	Ч Н 7	gain[dBi]	6.1	6.1	6.1	6.1	6.2	6.2
	7112	S21[dB]	-41.1	-28.4	-31.0	-32.9	-34.3	-41.3
$5.25~\mathrm{GHz}$	י ו ר	gain[dBi]	3.7	4.5	4.9	5.8	6.2	6.5
	TIZ	S21[dB]	-21.3	-17.3	-17.6	-18.7	-19.8	-21.7
5 60 0	ים-	gain[dBi]	3.2	7.3	7.7	7.6	7.4	7
5.00 GHZ	TIZ	S21[dB]	-24.3	-15.8	-18.0	-20.9	-22.3	-24.1

本型と同等の利得であるが, 5.25 GHz では, sp = 4 mm 以上から利得に差異がみられず, 5.60GHz では, sp = 1 mm 以外は, 各 sp で同等の利得である. 以上 のことより, sp = 4 mm とすることで, 性能を維持 しつつ最小のスペースであると判断した.

3. MACKEY T型の提案

図 6 (a) に 2. で示した並列配置型を,図 6 (b) に提 案する T 型の外面図を示す.図 6 中の,赤の実線は Wi-Fi 2 GHz 帯に適用するために動作し,青の実線は Wi-Fi 5 GHz 帯に適用するために動作する.図 6 (a)

図 6 並列配置型を小型化するためのアイディア Fig.6 Idea to reduce length of a parallel arrangement model.

図 7 A 型のモデル図 Fig.7 Model diagram of type A.

の並列配置型では、Wi-Fi 2 GHz 帯用の 2 枚のグリッ ドとWi-Fi 5 GHz 帯用の 2 枚のグリッドを合わせた 4 枚のグリッドで構成される.図6(b)のT型では、 並列配置型に比べ、赤と青の実線で重なっている部分 が別々の周波数帯のグリッドとして動作するため、グ リッド枚数が3枚となり、全体の横幅は小さくなると 考えられる.グリッド枚数が3枚となるモデルT型を 検討する.また、グリッドを共有するため、各周波数 に対応する2枚のグリッド幅は左右で非対称となるた めA型となる[15].図7にA型のモデル図を示す.T 型を実現するためには、Wi-Fi 2 GHz/5 GHz 帯用の A型を最小で構成できる共有グリッド幅:gs を決定す る必要があり、その実現性が技術的課題である.また、 共有グリッド幅: g_s が決定されれば,Wi-Fi 2 GHz 用のグリッド幅: g_1 ,Wi-Fi 5 GHz 帯用グリッド幅: g_2 により設計することができるため,Wi-Fi 2 GHz/5 GHz 帯用の A 型を組み合わせることで T 型を設計す ることができる.また,Wi-Fi 2 GHz/5 GHz 帯の検 討を行っているため,Wi-Fi 2 GHz 帯のグリッドの スリット幅は,相互結合による性能の劣化を防ぐため のスペースの役割となる.したがって,Wi-Fi 2 GHz 帯のグリッドのスリット幅:spは,**2.3**で示したよう に,相互結合による性能の劣化が小さい4 mm を選 ぶ.また,5 GHz 帯のグリッドのスリット幅は,従来 の MACKEY と同様に0.5 mm とする.

4. MACKEY T型を実現するための MACKEY A型の検討

4.1 共有グリッド幅:g_sの検討

本節では、Wi-Fi 2 GHz/5 GHz 帯の二つの周波数 帯に適用する共有グリッド幅:gs について検討を行う.

はじめに,Wi-Fi 2 GHz 帯用のA 型について検討 する.共有グリッド幅:g_sを2 mm から8 mm まで 2 mm ごとに固定し,アンテナ長: ℓ とグリッド幅: g₁で整合した.表5に設計パラメータ及び比帯域幅 を示す.なお,表5に示していないパラメータは表1 と同様とする.図8に整合した各共有グリッド幅:g_s の自由空間における VSWR 特性を示す.また,基本 型の VSWR 特性も重ねて示す.図8より,設計周波

表 5 A 型 (Wi-Fi 2 GHz 帯) の設計パラメータ Table 5 Design parameters of type A (Wi-Fi 2 GHz band).

shared grid width : $g_s[mm]$	2	4	6	8
length of dipole antenna : ℓ [mm]	36.5	32.8	30.0	27.8
width of grid : $g_1[mm]$	35.0	34.8	34.5	34.2
length of substrate : L[mm]	41.0	42.8	44.5	46.3
BW[%]	1.6	2.9	2.9	3.7

図 8 A 型 (Wi-Fi 2 GHz 帯)の VSWR 特性

Fig. 8 $\,$ VSWR characteristics of type A (Wi-Fi 2 GHz band).

数 (2.45 GHz) において 2 枚のグリッド幅が異なって も整合がとれていることがわかる.小型アンテナの場 合,体積と比帯域幅には比例の関係があるため,表 5 に示すように,全体の横幅が小さくなる (体積が減少) につれて比帯域幅が減少していることがわかる.

つぎに、Wi-Fi 5 GHz 帯用の A 型について検討す る. 共有グリッド幅:gs を 2 mm から 8 mm まで 2 mm ごとに固定し、第 1 共振周波数をアンテナ長: ℓ とグリッド幅:g2 で、第 2 共振周波数を基板縦幅:W でコントロールし、整合した.表 6 に設計パラメータ 及び比帯域幅を示す.なお、表 6 に示していないパラ メータは表 1 と同様とする.図 9 に整合した各共有グ リッド幅:gs の自由空間における VSWR 特性を示す. また、広帯域型の VSWR 特性も重ねて示す.図 9 よ り、設計周波数 (5.25 GHz) において 2 枚のグリッド 幅が異なっても整合がとれていることがわかる.表 6 より、基板横幅に変化が少ないため、A 型 2GHz 帯の ように比帯域幅の変化があまり見られない.

Wi-Fi 2 GHz/5 GHz 帯用の A 型の結果より, 基板 横幅が最小でかつ Wi-Fi の比帯域幅をおおむね確保で きているのは, 共有グリッド幅: g_s が 8 mm である ことがわかる.

4.2 試作した MACKEY A 型の解析・測定結果 本節では, 試作した A 型を示し, 解析・測定結果の 比較を行う.

shared grid width : $g_s[mm]$	2	4	6	8
width of substrate : W[mm]	32.5	32.5	32.0	30.0
length of dipole antenna : ℓ [mm]	17.9	14.8	12.5	12.8
width of grid : g ₂ [mm]	15.0	14.3	13.6	12.6
length of substrate : L[mm]	17.5	18.8	20.1	21.1
BW[%]	16.0	16.5	13.7	18.5

図 9 A 型 (Wi-Fi 5 GHz 帯)の VSWR 特性

Fig. 9 $\,$ VSWR characteristics of type A (Wi-Fi 5 GHz band).

(a) Model diagram of type A for Wi-Fi 5 GHz band

図 10 試作した A 型のモデル図 Fig. 10 Prototype model of type A.

表 7 試作した A 型の設計パラメータ

Table 7 Design parameters of prototype model of
type A.

design parameter	va	lue	
length of dipole antenna(2 GHz) : ℓ_1	37.0	-	
length of dipole antenna (5 GHz) : ℓ_2	-	12.9	
width of $grid(2 \text{ GHz})$: g_1	33.5	-	
width of $grid(5 \text{ GHz})$: g_2	-	12.4	
shared grid width : g_s	8	3	
length of substrate : L	45.5	20.9	
width of dipole antenna(2 GHz) : w_1	7.1	-	
width of dipole antenna(5 GHz) : w_2	-	1.0	
space : sp	4		
	Unit	t [mm	

図 10 (a) に Wi-Fi 2 GHz 帯用の A 型を, 図 10 (b) に Wi-Fi 5 GHz 帯用の A 型を,表7 に設計パラメー タを示す. なお,積層方法はプリプレグを用いて圧着 した.共有グリッド幅:g_sは,4.1 で決定した8 mm である.Wi-Fi 2 GHz 帯用の A 型は,Wi-Fi 2 GHz 帯用のアンテナ長: ℓ_1 ,アンテナ幅:w₁,グリッド幅: g₁ で整合した.Wi-Fi 5 GHz 帯用の A 型は,Wi-Fi 5 GHz 帯用のアンテナ長: ℓ_2 とグリッド幅:g₂ で整 合した.また,共有グリッド幅:g_sが8 mmのため, Wi-Fi 2 GHz/5 GHz 帯用のダイポールアンテナは物 理的に干渉する.物理的干渉を防ぐため,ダイポール アンテナの幅を太くし,ダイポールアンテナの給電点 からみたときの左右の長さを変え給電(オフセット給 電)した.以下にダイポールアンテナの幅を太くし, オフセット給電をした際の影響をまとめる.

ダイポールアンテナの幅を太くすることで、インピーダンスの虚部が高くなる。

ダイポールアンテナをオフセット給電すること

図 11 試作した A 型の VSWR 特性

Fig. 11 VSWR characteristics of prototype model of type A.

表 8 試作した A 型の比帯域幅 Table 8 Relative bandwidth of type A.

	Analysis	Measure	Analysis	Measure
	in free space	in free space	on metal	on metal
	4.0%	4.0%	4.0%	4.0%
BW	(2 - 3 GHz)	(2 - 3 GHz)	(2 - 3 GHz)	(2 - 3 GHz)
DW	17.3%	17.3%	18.0%	16.8%
	(5 - 6 GHz)	(5 - 6 GHz)	(5 - 6 GHz)	(5 - 6 GHz)

で,インピーダンスの虚部が低くなる.

Wi-Fi 2 GHz 帯用の A 型の自由空間と金属上にお ける VSWR 特性を図 11 (a) に, Wi-Fi 5 GHz 帯用 の A 型を図 11 (b) に示す.また,表 8 に自由空間と 金属上における比帯域幅を示す.図 11 より,自由空 間だけでなく金属上においても動作していることがわ かる.また,表 8 より,Wi-Fi 2 GHz/5 GHz 帯の比 帯域幅を満たしていることがわかる.2.80 GHz 付近 の共振は,Wi-Fi 2 GHz 帯用のダイポールアンテナに よる共振と考えられる.Wi-Fi 2 GHz 帯のダイポー ルアンテナはスリットから見て左側の長さが 35 mm, 右側の長さが 1.5 mm である. 2.80 GHz は,誘電率 が約 2.6 とすると,約 $\lambda/2$ 波長であり,おおむね一致 する.

MACKEY T型の設計及び解析・ 測定結果

5.1 MACKEY T型の設計

4.2 で検討した A 型を組み合わせた T 型を図 12 に,設計パラメータを表 9 示す.共有グリッド幅:g_s は**4.1** で決定した 8 mm である.Wi-Fi 2 GHz 帯は, Wi-Fi 2 GHz 帯用のアンテナ長: ℓ_1 ,アンテナ幅: w₁,グリッド幅:g₁ で整合した.Wi-Fi 5 GHz 帯は, Wi-Fi 5 GHz 帯用のアンテナ長: ℓ_2 とグリッド幅:g₂ で整合した.寸法は,基板縦幅 = 30 mm × 基板横 幅 = 56.8 mm × 厚さ = 4 mm である.設計した T 型は, sp = 4 mm の並列配置型に比べ約 30%横幅が 小型化した.

図 12 T 型のモデル図 Fig.12 Model diagram of type T.

表 9 T 型の設計パラメータ Table 9 Design parameters of type T.

design parameter	value
length of dipole antenna (2 GHz) : ℓ_1	36.8
length of dipole antenna (5 GHz) : ℓ_2	12.8
width of grid (2 GHz) : g_1	33.3
width of grid (5 GHz) : g_2	18.8
shared grid width : g_s	8
length of substrate : L	56.8
width of substrate : W	30.0
width of dipole antenna (2 GHz) : w_1	8.3
width of dipole antenna (5 GHz) : w_2	1.0
width of slit : s	0.5
space : sp	4
Un	it [mm

5.2 MACKEY T型の解析・測定結果

T型の自由空間と金属上における VSWR 特性を 図 13 に,主偏波成分である E_{θ} 成分の放射パターン (2.45 GHz, 5.25 GHz, 5.60 GHz)を図 14 に示す. また,表 10 に自由空間と金属上における比帯域幅と 正面 (X) 方向における利得を示す.図 13 及び表 10 より,Wi-Fi 2 GHz/5 GHz 帯の比帯域幅を満たして いることがわかる.2.80GHz 付近の共振は,A型の測 定結果と同様に、ダイポールアンテナの共振と考えら れる.図 14 及び表 10 より,利得と放射パターンの 解析結果と測定結果が一致していることがわかる.放 射パターンが Z 軸で対称でないのは、Y 軸で構造が非 対称なためである.また、これらの結果より自由空間 及び金属上で動作していることがわかる.

図 15 に放射パターンの測定系を示す.図 15 のように,MACKEY に対してプローブは垂直方向へ配置 している.主偏波成分である *E*₀ 成分は水平方向の電

表 10	T 型の比帯	域幅及び正面	(\mathbf{X})	方向(の禾	刂得
Table 10) Relative	bandwidth	and	$_{gain}$	$_{\mathrm{in}}$	the
	front(X)	direction o	f typ	е Т.		

	Analysis	Measure	Analysis	Measure
	in free space	in free space	on metal	on metal
BW	6.1%	6.5%	4.4%	4.2%
	(2 - 3 GHz)	(2 - 3 GHz)	(2 - 3 GHz)	(2 - 3 GHz)
	13.9%	13.6%	15.6%	16.0%
	(5 - 6 GHz)	(5 - 6 GHz)	(5 - 6 GHz)	(5 - 6 GHz)
gain	6.1 dBi	6.0 dBi	7.8 dBi	7.7 dBi
	(2.45 GHz)	(2.45 GHz)	(2.45 GHz)	(2.45 GHz)
	5.7 dBi	5.6 dBi	8.1 dBi	8.1 dBi
	(5.25 GHz)	(5.25 GHz)	(5.25 GHz)	(5.25 GHz)
	5.7 dBi	4.9 dBi	6.4 dBi	5.9 dBi
	(5.60 GHz)	(5.60 GHz)	(5.60 GHz)	(5.60 GHz)

界であるため,プローブによる影響が少ないことが測 定結果よりわかる.交差偏波成分である *E*_φ 成分は, 垂直方向の電界であるため,プローブや同軸ケーブル

図 15 放射パターンの測定系 Fig. 15 Measurement system of radiation pattern.

などの不要放射が大きくなってしまう.解析に比べ測 定では、20 dB 程度交差偏波成分が大きくなっている. また、本測定ではバランを用いず、S パラメータ法を 用いた[16].MACKEY は平衡系であり、測定で用い る同軸ケーブルは不平衡系である.S パラメータ法を 用いることで、平行 - 不平衡の変換をせずに、不平衡 電流の影響を低減することができる.また、VSWR 特性の測定は、一方のアンテナに給電し、もう一方の アンテナはダミーを用いず、開放で測定をした.理由 は、開放の場合が影響が大きいと考えたからである.

6. む す び

本論文では、**3.** において、並列配置型を小型化する ためのアイディアとして、グリッドを共有した T 型を 示した. **4.** において、Wi-Fi 2 GHz/5 GHz 帯用の A 型を検討し、Wi-Fi 2 GHz/5 GHz 帯をおおむね満た した共用グリッド幅: $g_s = 8 \text{ mm}$ を決定した. また、 測定した Wi-Fi 2 GHz/5 GHz 帯用の A 型は Wi-Fi 2 GHz/5 GHz 帯を満たした. **5.** において、設計した T 型は、sp = 4 mmの並列配置型に比べ約 30%横幅 が小型化することを示した. 測定した T 型は、Wi-Fi 2 GHz/5 GHz 帯を満たし、自由空間だけでなく金属 上においても動作することを示した. 解析・測定結果 はおおむね一致しており、設計の妥当性を確認した.

謝辞 本研究は, JST CREST (JPMJCR16Q)の 助成を受けたものである.

文

献

- 総務省,情報通信白書平成 30 年度版,http://www. soumu.go.jp/johotsusintokei/whitepaper/ja/h30/ pdf/index.html, 2018 年 8 月 16 日.
- [2] 榊原久二男,"人工磁気導体,"アンテナ・伝搬における設

計・解析手法ワークショップ(第 38 回), "アンテナ応用の ためのメタマテリアルの基礎,"第1章, pp.64–73, Nov. 2009.

- [3] Y. Zhang, J. Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar articial magnetic conductors and patch anten-nas," IEEE Trans. Antennas Propag., vol.51, no.10, pp.2704–2712, 2003.
- [4] 川上由紀, 堀 俊和, 藤元美俊, 山口 良, 長 敬三, "地 板付き周波数選択板の PMC 特性,"信学技報, AP2008-107, 2008.
- [5] 関 歓揮,牧野 滋,別段信一,廣田哲夫,野口啓介,水澤 丕雄,大塚昌孝,"金属板装荷 FSR の反射位相特性,"信 学技報, AP2008-204, 2009.
- [6] 林 勝也,牧野 滋,別段信一,廣田哲夫,野口啓介,伊東 健治,諸谷徹郎,"金属板装荷 FSR における等価回路を用 いた反射特性解析と AMC 基板への適用,"信学論(B), vol.J96-B, no.9, pp.1010–1018, Sept. 2013.
- [7] 諸谷徹郎,林 秀幸,牧野 滋,野口啓介,廣田哲夫,伊東 健治,"金属板装荷キャパシタンスグリッドを用いた AMC 基板上に配置したダイポールアンテナの特性,"信学論 (B), vol.J98-B, no.9, pp.939-947, Sept. 2015.
- [8] 村上靖宜,堀 俊和,藤元美俊, "AMC 反射板付ダイ ポールアンテナのための反射板の最適構成,"信学論(B), vol.J98-B, no.11, pp.1212–1220, Nov. 2015.
- [9] 諸谷徹郎,小鷹柾樹,牧野 滋,林 秀幸,野口啓介,廣田 哲夫,伊東健治,"AMC 基板一体化ダイポールアンテナ の提案,"信学技報,AP2014-211,2014.
- [10] 諸谷徹郎, 小鷹柾樹, 牧野 滋, 林 秀幸, 野口啓介, 廣田 哲夫, 伊東健治, "AMC 技術を用いた小型薄型アンテナ MACKEY," 信学論(B), vol.J99-B, no.9, pp.786-794, Sept. 2016.
- [11] 諸谷徹郎,牧野 滋,大坪靖治,野口啓介,"小型アンテ ナ MACKEY の広帯域化に関する一検討,"信学技報, AP2016-52, 2016.
- [12] 須永 誼,大坪靖治,牧野 滋,廣田哲夫,野口啓介,伊東 健治,諸谷徹郎, "MACKEY O 型の広帯域化モデルの検 討," 2015 信学ソ大(通信), B-1-62, Sept. 2016.
- [13] S. Makino, T. Moroya, M. Kotaka, K. Itoh, K. Noguchi, and T. Hirota, "Dual band MACKEY-E with E shaped radiator," IEEE APWC, Australia, 2016.
- [14] 大坪靖治,小鷹柾樹,牧野 滋,廣田哲夫,野口啓介,伊東 健治,諸谷徹郎,"オフセット給電により2周波共用化した MACKEY O型の検討,"信学技報,AP2016-21,2016.
- [15] 平野 賢,牧野 滋,野口啓介,伊東健治,廣田哲夫, "MACKEY A 型に関する検討,"信学技報,AP2017-110,2017.
- [16] 深沢 徹,宮下裕章,小西善彦, "S パラメータ法を用 いた小型アンテナの放射パターン測定法,"信学技報, AP2010-50, 2010.

(2018 年 10 月 1 日受付, 2019 年 1 月 7 日再受付, 2 月 26 日早期公開)

平野 賢 (学生員)

平 29 金沢工大・工・情報通信卒.同年 同大大学院工学前期博士課程入学.小型ア ンテナ MACKEY に関する研究に従事.

牧野 滋 (正員:フェロー)

昭 52 京大・工・電気第二卒.同年三菱 電機(株)に入社.地上マイクロ波回線用 アンテナ,レーダ用アンテナ,地球局用ア ンテナ,衛星搭載用アンテナなどの研究に 従事.同社情報技術総合研究所アンテナ技 術部長を経て,平 19 年金沢工大教授.昭

62, 平 8, 平 9, 平 10 関東地方発明表彰発明奨励賞, 平 10 *R&D*100 賞, 平 17 第 16 回電波功績賞電波産業会会長表彰, 平 18 市村産業賞貢献賞, 平 21 本会通ソチュートリアル論文 賞, 平 28 本会論文賞など受賞. IEEE Senior member. 工博.

伊東 健治 (正員)

昭58 同志社大・工・電子工学科卒,昭 58 三菱電機(株)に入社、衛星通信地球局, 衛星搭載中継器、レーダ装置などに用いら れるマイクロ波送受信機の研究開発,携帯 電話機の開発に従事、同社モバイルターミ ナル製作所ハードウェア技術部長を経て,

平 21 金沢工大教授. 平 12, 平 17 関東地方発明表彰発明奨励 賞,平 18 近畿地方発明表彰発明奨励賞,平 14 第 50 回オーム 技術賞,平 28 本会論文賞など受賞. 著書「モバイル通信の無線 回路技術」(電子情報通信学会,共著). IEEE Fellow member. 博士 (工学).